
Media Queries: Supporting

Differing Viewports
As we noted in the last chapter, CSS3 consists of a number of bolt-on modules.
Media queries is just one of these CSS3 modules. Media queries allow us to
target speciic CSS styles depending upon the display capabilities of a device. For
example, with just a few lines of CSS we can change the way content displays based
upon things such as viewport width, screen aspect ratio, orientation (landscape or
portrait), and so on.

In this chapter, we shall:

•	 Learn why media queries are needed for a responsive web design

•	 Learn how a CSS3 media query is constructed

•	 Understand what device features we can test for

•	 Write our irst CSS3 media query
•	 Target CSS style rules to speciic viewports
•	 Learn how to make media queries work on iOS and Android devices

You can use media queries today
Media queries are already widely used and enjoy a broad level of browser support
(Firefox 3.6+, Safari 4+, Chrome 4+, Opera 9.5+, iOS Safari 3.2+, Opera Mobile 10+,
Android 2.1+, and Internet Explorer 9+). Furthermore, there are easy to implement
(albeit JavaScript based) ixes for common aged browsers such as Internet Explorer
versions 6, 7, and 8. If you need to grab the ixes for Internet Explorer versions 6, 7, and
8 now, you'll need to look at Chapter 9, Solving Cross-browser Responsive Challenges. In
short, there's no good reason why we can't get using media queries today!

Media Queries: Supporting Differing Viewports

[36]

Speciications at the W3C go through a ratiication
process (if you have a spare day, knock yourself out with
the oficial explanation of the process at http://www.
w3.org/2005/10/Process-20051014/tr), from Working
Draft (WD), to Candidate Recommendation (CR), to Proposed
Recommendation (PR) before inally arriving, many years
later, at W3C Recommendation (REC). So modules at a
greater maturity level than others are generally safer to use.
For example, CSS Transforms Module Level 3 (http://www.
w3.org/TR/css3-3d-transforms/) has been at WD status
since March 2009 and browser support for it is far scanter than
CR modules such as media queries.

Why responsive designs need media
queries?
Without the CSS3 media query module, we would be unable to target particular CSS
styles at particular device capabilities, such as the viewport width. If you head over
to the W3C speciication of the CSS3 media query module (http://www.w3.org/TR/
css3-mediaqueries/), you'll see that this is their oficial introduction to what media
queries are all about:

HTML 4 and CSS2 currently support media-dependent style sheets tailored for
different media types. For example, a document may use sans-serif fonts when
displayed on a screen and serif fonts when printed. 'screen' and 'print' are two
media types that have been deined. Media queries extend the functionality of media
types by allowing more precise labeling of style sheets.

A media query consists of a media type and zero or more expressions that check for
the conditions of particular media features. Among the media features that can be
used in media queries are 'width', 'height', and 'color'. By using media queries,
presentations can be tailored to a speciic range of output devices without changing
the content itself.

Media query syntax
So what does a CSS media query look like and more importantly, how does it work?

http://www.w3.org/TR/css3-3d-transforms/
http://www.w3.org/TR/css3-3d-transforms/

Chapter 2

[37]

Enter the following code at the bottom of any CSS ile and preview the related
web page:

body {

 background-color: grey;

}

@media screen and (max-width: 960px) {

 body {

 background-color: red;

 }

}

@media screen and (max-width: 768px) {

 body {

 background-color: orange;

 }

}

@media screen and (max-width: 550px) {

 body {

 background-color: yellow;

 }

}

@media screen and (max-width: 320px) {

 body {

 background-color: green;

 }

}

Now, preview the ile in a modern browser (at least IE 9 if you use IE) and resize the
browser window. The background color of the page will vary depending upon the
current viewport size. I've used named colors here for clarity but ordinarily you'd
use a HEX code; for example, #ffffff.

Now, let's go ahead and break down these media queries to understand how we can
make best use of them.

If you are used to working with CSS2 stylesheets you'll know it's possible to specify
the type of device (for example, screen or print) applicable to a stylesheet with the
media attribute of the <link> tag. You could do so by placing a link as done in the
following code snippet within the <head> tags of your HTML:

<link rel="stylesheet" type="text/css" media="screen" href="screen-
styles.css">

Media Queries: Supporting Differing Viewports

[38]

What media queries principally provide is the ability to target styles based upon the
capability or features of a device, rather than merely the type of device. Think of it as
a question to the browser. If the browser's answer is "true", the enclosed styles are
applied. If the answer is "false", they are not. Rather than just asking the browser
"Are you a screen?"—as much as we could effectively ask with just CSS2—media
queries ask a little more. Instead, a media query might ask, "Are you a screen and
are you in portrait orientation?" Let's look at that as an example:

<link rel="stylesheet" media="screen and (orientation: portrait)"
href="portrait-screen.css" />

First, the media query expression asks the type (are you a screen?), and then
the feature (is your screen in portrait orientation?). The portrait-screen.css
stylesheet will be loaded for any screen device with a portrait screen orientation
and ignored for any others. It's possible to reverse the logic of any media query
expression by adding not to the beginning of the media query. For example, the
following code would negate the result in our prior example, loading the ile for
anything that wasn't a screen with a portrait orientation:

<link rel="stylesheet" media="not screen and (orientation: portrait)"
href="portrait-screen.css" />

It's also possible to string multiple expressions together. For example, let's extend
our irst media query example and also limit the ile to devices that have a viewport
greater than 800 pixels.

<link rel="stylesheet" media="screen and (orientation: portrait) and
(min-width: 800px)" href="800wide-portrait-screen.css" />

Further still, we could have a list of media queries. If any of the listed queries are
true, the ile will be loaded. If none are true, it won't. Here is an example:

<link rel="stylesheet" media="screen and (orientation: portrait) and
(min-width: 800px), projection" href="800wide-portrait-screen.css" />

There are two points to note here. Firstly, a comma separates each media query.
Secondly, you'll notice that after projection, there is no trailing and or feature/
value combination in parentheses. That's because in the absence of these values,
the media query is applied to all media types. In our example, the styles will apply
to all projectors.

Chapter 2

[39]

Just like existing CSS rules, media queries can conditionally load styles in a variety of
ways. So far, we have included them as links to CSS iles that we would place within
the <head></head> section of our HTML. However, we can also use media queries
within CSS stylesheets themselves. For example, if we add the following code into
a stylesheet, it will make all h1 elements green, providing the device has a screen
width of 400 pixels or less:

@media screen and (max-device-width: 400px) {

 h1 { color: green }

}

We can also use the @import feature of CSS to conditionally load stylesheets
into our existing stylesheet. For example, the following code would import the
stylesheet called phone.css, providing the device was screen based and had a
maximum viewport of 360 pixels:

@import url("phone.css") screen and (max-width:360px);

Remember that using the @import feature of CSS, adds to HTTP requests
(which impacts load speed); so use this method sparingly.

What can media queries test for?
When building responsive designs, the media queries that get used most often
relate to a device's viewport width (width) and the width of the device's screen
(device-width). In my own experience, I have found little call for the other
capabilities we can test for. However, just in case the need arises, here is a list of all
capabilities that media queries can test for. Hopefully, some will pique your interest:

•	 width: The viewport width.

•	 height: The viewport height.

•	 device-width: The rendering surface's width (for our purposes, this is
typically the screen width of a device).

•	 device-height: The rendering surface's height (for our purposes, this is
typically the screen height of a device).

•	 orientation: This capability checks whether a device is portrait or
landscape in orientation.

•	 aspect-ratio: The ratio of width to height based upon the viewport
width and height. A 16:9 widescreen display can be written as
aspect-ratio: 16/9.

Media Queries: Supporting Differing Viewports

[40]

•	 device-aspect-ratio: This capability is similar to aspect-ratio but is
based upon the width and height of the device rendering surface, rather
than viewport.

•	 color: The number of bits per color component. For example, min-color:
16 will check that the device has 16-bit color.

•	 color-index: The number of entries in the color lookup table of the device.
Values must be numbers and cannot be negative.

•	 monochrome: This capability tests how many bits per pixel are in a
monochrome frame buffer. The value would be a number (integer), for
example monochrome: 2, and cannot be negative.

•	 resolution: This capability can be used to test screen or print resolution; for
example, min-resolution: 300dpi. It can also accept measurements in dots
per centimetre; for example, min-resolution: 118dpcm.

•	 scan: This can be either progressive or interlace features largely particular to
TVs. For example, a 720p HD TV (the p part of 720p indicates "progressive")
could be targeted with scan: progressive whilst a 1080i HD TV (the i part
of 1080i indicates "interlaced") could be targeted with scan: interlace.

•	 grid: This capability indicates whether or not the device is grid or
bitmap based.

All the above features, with the exception of scan and grid, can be preixed with min
or max to create ranges. For example, consider the following code snippet:

@import url("phone.css") screen and (min-width:200px) and (max-
width:360px);

Here, a minimum (min) and maximum (max) have been applied to width to set a
range. The phone.css ile will only be imported for screen devices with a minimum
viewport width of 200 pixels and a maximum viewport width of 360 pixels.

Using media queries to alter our design
As you're, no doubt, aware that CSS stands for Cascading Style Sheet. By their very
nature styles further down a cascading stylesheet override equivalent styles higher
up (unless styles higher up are more speciic). We can therefore set base styles at the
beginning of a stylesheet, applicable to all versions of our design, and then override
relevant sections with media queries further on in the document. For example,
set navigation links as simple text links for the large viewport version of a design
(where it's more likely that users will be using a mouse) and then overwrite those
styles with a media query to give us a larger target area (for inger presses) for more
limited viewports.

Chapter 2

[41]

The best way to load media queries for
responsive designs
Although modern browsers are smart enough to ignore media query targeted iles
that are not intended for them, it doesn't always stop them actually downloading
the iles. There is therefore little advantage (apart from personal preference and/
or compartmentalization of code) in separating different media query styles into
separate iles. Using separate iles increases the number of HTTP requests needed
to render a page, which in turn makes the page slower to load.

The fastest JavaScript tool, Respond.js (https://github.com/scottjehl/Respond)
for adding partial media query support to Internet Explorer 8 and lower versions is
also currently unable to parse CSS referenced by the @import command. I'd therefore
recommend adding media queries styles within an existing stylesheet. For example,
in the existing stylesheet, simply add the media query using the following syntax:

@media screen and (max-width: 768px) { YOUR STYLES }

Our irst responsive design
I don't know about you but I'm itching to get started with a responsive web design!
Now we understand the principles of media queries, let's test drive them and see
how they work in practice. And I have just the project we can test them on. Indulge
me a brief digression…

I like ilms. However, I commonly ind myself disagreeing with others (perhaps that
is a contributing factor of me spending my days writing code… alone!), speciically
about what is and what isn't a good ilm. When the Oscar nominees are announced
I often have a strong feeling of revulsion in the pit of my stomach. I can't help
feeling that different ilms should be picking up the accolades. I'd like to launch
a small site called And the winner isn't…, which you'll be able to view online at
http://www.andthewinnerisnt.com/ on the Web. It will celebrate the ilms that
should have won, berate the ones that did (and shouldn't have) and have video clips,
quotes, images, and quizzes thrown in to illustrate I'm correct (I know, I shouldn't
need to but I'm good like that).

https://github.com/scottjehl/Respond
https://github.com/scottjehl/Respond
http://www.andthewinnerisnt.com/

Media Queries: Supporting Differing Viewports

[42]

Don't panic but our design is ixed-width
Much like the graphic designers whom I previously scolded for not considering
differing viewports, I started a graphical mockup based around a ixed, 960 pixel-
wide grid. In reality, although theoretically it would always be best to start a design
thinking about the mobile/small screen experience and building up from there, it's
going to be some years until everyone understands the beneits of that thinking.
Until then, it's likely you'll need to take existing desktop designs and "retro-it" them
to work responsively. As this is the scenario we are likely to ind ourselves in for the
foreseeable future, we will begin our process with a ixed-width design of our own.
The following screenshot shows what the uninished ixed-width mockup looks like:

Breaking it down, it has a very simple and common structure—header, navigation,
sidebar, content, and footer. Hopefully, this is typical of the kind of structure you're
asked to build week in and week out.

In Chapter 4, HTML5 for Responsive Designs, I'll tell you why you should be using
HTML5 for your markup. However, I'm going to let this slide for now, as we're
so eager to test our new media queries skills. So, let's take our irst stab at using
media queries using good ol' HTML 4 markup. Without the actual content, the
basic structure in HTML 4 markup looks like the following code:

Chapter 2

[43]

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>And the winner isn't</title>

<link href="css/main.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="wrapper">

 <!-- the header and navigation -->

 <div id="header">

 <div id="navigation">

 navigation1

 navigation2

 </div>

 </div>

 <!-- the sidebar -->

 <div id="sidebar">

 <p>here is the sidebar</p>

 </div>

 <!-- the content -->

 <div id="content">

 <p>here is the content</p>

 </div>

 <!-- the footer -->

 <div id="footer">

 <p>Here is the footer</p>

 </div>

</div>

</body>

</html>

Media Queries: Supporting Differing Viewports

[44]

Looking at the design ile in Photoshop, we can see that the header and footer are
940 pixels wide (with 10-pixels margin on either side), and the sidebar and content
occupy 220 and 700 pixels, respectively, with a 10-pixel margin on either side of each.

First off, let's set up our structural blocks (header, navigation, sidebar, content, and
footer) in the CSS. After inserting the "reset" styles, our super exciting (not!) CSS for
the page looks as follows:

#wrapper {

 margin-right: auto;

 margin-left: auto;

 width: 960px;

}

#header {

 margin-right: 10px;

 margin-left: 10px;

 width: 940px;

 background-color: #779307;

}

#navigation ul li {

 display: inline-block;

Chapter 2

[45]

}

#sidebar {
 margin-right: 10px;
 margin-left: 10px;
 float: left;
 background-color: #fe9c00;
 width: 220px;
}

#content {
 margin-right: 10px;
 float: right;
 margin-left: 10px;
 width: 700px;
 background-color: #dedede;
}

#footer {
 margin-right: 10px;
 margin-left: 10px;
 clear: both;
 background-color: #663300;
 width: 940px;
}

To illustrate how the structure works, besides adding the additional content
(sans images) I've also added a background color to each structural section.

Just in case you missed the memo, "reset" styles are a bunch of cover-
all CSS declarations that reset the various default styles that different
browsers render HTML elements with. They are added to the beginning
of the main stylesheet in an attempt to reset each browser's own styles
to a level playing ield so that styles added afterwards in the stylesheet
have the same effect across different browsers. There is no "perfect"
set of reset styles and most developers have their own variation on the
theme. The reset styles I use in HTML 4 documents are a combination
of Eric Meyer's original (http://meyerweb.com/eric/tools/css/
reset/) and a bunch of personal preferences and tricks I have picked
up from studying the code of other incredibly clever folks such as Dan
Cederholm (http://simplebits.com). If you don't currently use reset
styles, inserting Eric's reset styles at the start of your HTML 4 document
will be a good irst step. I feel there are better starting points for HTML5
documents, such as normalize.css (http://necolas.github.
com/normalize.css/) and we'll look at that in Chapter 4, HTML5 for
Responsive Designs.

http://simplebits.com
http://necolas.github.com/normalize.css/
http://necolas.github.com/normalize.css/

Media Queries: Supporting Differing Viewports

[46]

In a browser with a viewport larger than 960 pixels, the following screenshot shows
how the basic structure looks:

There are numerous other ways the same kind of ixed left/right content structure
could be achieved with CSS; you'll no doubt have your own preference. What's
universally true of them all however is that as the viewport decreases to less than 960
pixels, areas of the content at the right start getting clipped.

Responsive designs—making images as
economical as possible
For the sake of illustrating the problems with the code structure as it is, I've gone ahead
and added some of the aesthetic styling from our graphic ile into the CSS. As this will
ultimately be a responsive design, I've been sure to slice up the background images in
the most economical way. For example, for the bunting lags at the top and bottom of
the design, instead of creating one long strip as a graphic ile, I have sliced around two
lags. This slice will then be repeated horizontally as a background image across the
viewport to give the illusion of one long strip (no matter how wide things get). In real
terms, this makes a difference of 16 KB (the full 960 pixels wide strip was a 20 KB .png
ile whilst the slice was only 4 KB) on each strip. A mobile user viewing the site over
a phone network will appreciate that economy! The following screenshot shows what
the slice looks like (zoomed to 600 percent) before export:

Chapter 2

[47]

With the background images in place and basic font sizes in place, here is how the
And the winner isn't… site looks in a browser window:

Style wise, there is still a lot of work to do. For example, the navigation menu doesn't
alternate between red and black, the main THESE SHOULD HAVE WON button in
the content area and the full info buttons from the sidebar are missing and the fonts
are all a far cry from the ones shown in the graphic ile. However, all these things
are ixable with HTML5 and CSS3. Using HTML5 and CSS3 to solve these problems,
rather than merely inserting image iles (as we may have done previously), will make
a website in tune with our responsive goal. Remember that we want our code and
data overheads as lean as possible to afford users with limited bandwidth speeds an
enjoyable experience.

Media Queries: Supporting Differing Viewports

[48]

Content clipping in smaller viewports
For now, let's put aside the aesthetic problems and keep focused on the fact than
when the viewport is reduced below 960 pixels, there is some seriously nasty
clipping on our work in progress home page:

Chapter 2

[49]

We've only reduced it to 673 pixels wide; imagine how bad it must look
on something like an iPhone 3GS? That only has a 320 x 480 pixel display.
Just take a look at the following screenshot:

Oh, hang on, this is embarrassing, as it looks just ine, well kind of… Of course, the
iOS Safari browser automatically draws pages onto a 980 pixel wide canvas and then
squeezes that canvas down to it the viewport area. We still have to zoom in to see
areas but there's no content being clipped. How do we stop Safari and other mobile
browsers from doing this?

Media Queries: Supporting Differing Viewports

[50]

Stopping modern mobile browsers from
auto-resizing the page
Both iOS and Android browsers are based on WebKit (http://www.webkit.org/).
These browsers, and a growing number of others (Opera Mobile, for example), allow
the use of a speciic meta viewport element to override that default canvas shrinking
trick. The <meta> tag is simply added within the <head> tags of the HTML. It can be
set to a speciic width (which we could specify in pixels, for example) or as a scale,
for example 2.0 (twice the actual size). Here's an example of the viewport meta tag
set to show the browser at twice (200 percent) the actual size:

<meta name="viewport" content="initial-scale=2.0,width=device-width"
/>

Let's stick that into our HTML as done in the following code snippet:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<meta name="viewport" content="initial-scale=2.0,width=device-width"

/>

<title>And the winner isn't…</title>

Now, we'll load that page up in Android and see how it looks:

http://www.webkit.org/

Chapter 2

[51]

As you can see, this isn't exactly what we're gunning for but it illustrates the point, in
a big way!

Getting the iOS and Android emulators

Although there is no substitute for testing sites on real devices,
there are emulators for Android and iOS. Android emulator
for Windows, Linux and Mac is available free by downloading
and installing the Android Software Development Kit (SDK) at
http://developer.android.com/sdk/. It's a command
line setup; so not for the faint hearted. The iOS simulator is
only available to Mac OS X users and comes as part of the
Xcode package (free from the Mac App Store). Once Xcode is
installed, you can access it from ~/Developer/Platforms/
iPhoneSimulator.platform/Developer/Applications
iOS Simulator.app.

Let's break the above <meta> tag down and understand what's going on. The
name="viewport" attribute is obvious enough. The content="initial-scale=2.0
section is then saying, scale the content to twice the size (where 0.5 would be half the
size, 3.0 would be three times the size and so on) whilst the width=device-width
part tells the browser that the width of the page should be equal to device-width.

The <meta> tag can also be used to control the amount a user can zoom in and out
of the page. This example allows users to go as large as three times the device width
and as small as half the device width:

<meta name="viewport" content="width=device-width, maximum-scale=3,
minimum-scale=0.5" />

You could also disable users from zooming at all, although as zooming is an
important accessibility tool, it's rare that it would be appropriate in practice:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />

The user-scalable=no being the relevant part.

Right, we'll change the scale to 1.0, which means that the mobile browser will render
the page at 100 percent of its viewport. Setting it to the device's width means that
our page should render at 100 percent of the width of all supported mobile browsers.
Here's the <meta> tag we'll be using:

<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>

http://developer.android.com/sdk/
http://developer.android.com/sdk/

Media Queries: Supporting Differing Viewports

[52]

Looking at our page on an iPad in portrait mode now shows the content being
clipped but not as if we are looking through a pair of jam-jar spectacles! This is
how we want it at this point. This is progress, trust me!

Noticing that the viewport meta element is seeing increasing use, the
W3C is making attempts to bring the same capability into CSS. Head
over to http://dev.w3.org/csswg/css-device-adapt/ and read
all about the new @viewport declaration. The idea is that rather than
writing a <meta> tag in the <head> section of your markup, you could
write @viewport { width: 320px; } in the CSS instead. This would
set the browser width to 320 pixels. Some browsers already support the
syntax (Opera Mobile, for example), albeit by using their own vendor
preix; for example, @-o-viewport { width: 320px; }.

http://dev.w3.org/csswg/css-device-adapt/
http://dev.w3.org/csswg/css-device-adapt/

Chapter 2

[53]

Fixing the design for different viewport

widths
With our meta viewport problem ixed, no browsers are now zooming the page,
so we can set about ixing the design for different viewports. In the CSS, we'll add
a media query for devices such as tablets (for example, iPad) that have a viewport
width of 768 pixels in portrait view (as the landscape viewport width is 1024 pixels,
it renders the page ine when loaded in Landscape view).

@media screen and (max-width: 768px) {
 #wrapper {
 width: 768px;
 }
 #header,#footer,#navigation {
 width: 748px;
 }
}

Our media query is re-sizing the width of the wrapper, header, footer, and
navigation elements if the viewport size is no larger than 768 pixels. The
following screenshot shows how this looks like on our iPad:

Media Queries: Supporting Differing Viewports

[54]

I'm actually quite encouraged by that. The content now its on the iPad display (or
any other viewport no larger than 768 pixels) with no clipping. However, we need to
ix the Navigation area as the links are extending off the background image and the
main content area is loating below the sidebar (as it's too wide to it in the available
space). Let's amend our media query in the CSS, as demonstrated in the following
code snippet:

@media screen and (max-width: 768px) {

 #wrapper {

 width: 768px;

 }

 #header,#footer,#navigation {

 width: 748px;

 }

 #content,#sidebar {

 padding-right: 10px;

 padding-left: 10px;

 width: 728px;

 }

}

Now the sidebar and content area are illing the entire page and are nicely spaced
with a little padding on either side. However, this isn't very compelling viewing. I
want the content irst and the sidebar second (by it's nature it's a secondary area of
interest). I've made another schoolboy error here, if I'm attempting to approach this
design with a truly responsive design methodology.

With responsive designs, content should
always come irst
We want to retain as many features of our design across multiple platforms and
viewports (rather than hiding certain parts with display: none or similar) but
it's also important to consider the order in which things appear. At present, due to
the order of the sidebar and main content sections of our markup, the sidebar will
always want to display before the main content. It's obvious that a user with a more
limited viewport should get the main content before the sidebar, otherwise they'll be
seeing tangentially related content before the main content itself.

Chapter 2

[55]

We could (and perhaps should) move our content above our navigation area, too.
So that those with the smallest viewports get the content before anything else. This
would certainly be the logical continuation of adhering to a "content irst" maxim.
However, in most instances, we'd like some navigation atop each page, so I'm
happier simply swapping the order of the sidebar and content area in my HTML:
making the content section come before the sidebar. For example, consider the
following code:

<div id="sidebar">

 <p>here is the sidebar</p>

</div>

<div id="content">

 <p>here is the content</p>

</div>

Instead of the preceding code, we have code as follows:

<div id="content">

 <p>here is the content</p>

</div>

<div id="sidebar">

 <p>here is the sidebar</p>

</div>

Although we have altered the markup, the page still looks exactly the same in
larger viewports due to the float:left and float:right properties on the sidebar
and content areas. However, in the iPad, our content now appears irst, with our
secondary content (the sidebar) afterwards.

However, with our markup structured in the correct order I've also set about adding
and altering more styles, speciic to the 768 pixel wide viewport. This is what the
media query now looks like:

@media screen and (max-width: 768px) {

 #wrapper,#header,#footer,#navigation {

 width: 768px;

 margin: 0px;

 }

 #logo {

 text-align:center;

 }

 #navigation {

 text-align: center;

 background-image: none;

Media Queries: Supporting Differing Viewports

[56]

 border-top-color: #bfbfbf;

 border-top-style: double;

 border-top-width: 4px;

 padding-top: 20px;

 }

 #navigation ul li a {

 background-color: #dedede;

 line-height: 60px;

 font-size: 40px;

 }

 #content, #sidebar {

 margin-top: 20px;

 padding-right: 10px;

 padding-left: 10px;

 width: 728px;

 }

 .oscarMain {

 margin-right: 30px;

 margin-top: 0px;

 width: 150px;

 height: 394px;

 }

 #sidebar {

 border-right: none;

 border-top: 2px solid #e8e8e8;

 padding-top: 20px;

 margin-bottom: 20px;

 }

 .sideBlock {

 width: 46%;

 float: left;

 }

 .overHyped {

 margin-top: 0px;

 margin-left: 50px;

 }

}

Remember, the styles added here will only affect screen devices with a viewport of
768 pixels or less. Larger viewports will ignore them. Plus, because these styles are
after any existing styles, they will override them where relevant. The upshot being
that larger viewports get the design they got before. Devices with a 768 pixel wide
viewport, look as shown in the following screenshot:

Chapter 2

[57]

It goes without saying, we're not going to win any design awards here but with just
a few lines of CSS code within a media query, we have created an entirely different
layout for a different viewport. What did we do?

First off, we reset all the content areas to the full width of the media query, as
demonstrated in the following code snippet:

#wrapper,#header,#footer,#navigation {

 width: 768px;

 margin: 0px;

}

Media Queries: Supporting Differing Viewports

[58]

Then it was merely a matter of adding styles to alter the aesthetic layout of the
elements. For example, the following code snippet changes the navigation size,
layout, and background, so that it would be easier for tablet users (or any users
with a viewport of 768 pixels or less) to select a navigation item:

#navigation {
 text-align: center;
 background-image: none;
 border-top-color: #bfbfbf;
 border-top-style: double;
 border-top-width: 4px;
 padding-top: 20px;
}
#navigation ul li a {
 background-color: #dedede;
 line-height: 60px;
 font-size: 40px;
}

We now have exactly the same content displayed with a different layout depending
upon viewport size. Media queries are good, no? Let's have a party. While you fetch
the champagne, I'll just take a look on my iPhone to see how it looks there… You can
have a look at it in the following screenshot:

Chapter 2

[59]

Media queries—only part of the solution
Oh… best put that ice back in the freezer. Clearly our work is far from over; that
looks horrible on the smaller 320 pixel wide viewport of our iPhone. Our media
query is doing exactly what it should, applying styles dependent upon the features
of our device. The problem is however, that the media query covers a very narrow
spectrum of viewports. Anything with a viewport under 768 pixels is going to
experience clipping and anything between 768 and 960 pixels will experience
clipping as it will get the non-media query version of the CSS styles which, as we
already know, doesn't adapt once we take it below 960 pixels wide (your author rests
his head in his hands and lets out a long sigh).

We need a luid layout
Using media queries alone to change a design is ine if we have a speciic known
target device; we've already seen how easy it is to adapt a device to the iPad. But
this strategy has severe shortcomings; namely, it isn't really future-proof. At present,
when we resize our viewport, the design snaps at the points that the media queries
intervene and the shape of our layout changes. However, it then remains static until
the next viewport "break point" is reached. We need something better than this.
Writing CSS styles speciic to each and every viewport permutation doesn't make
allowances for future devices and a really great design is one with some degree of
future prooing built in. At this point our solution is incomplete. This is more of an
adaptive design rather than the truly responsive one we want. We need our design
to lex before it snaps. To make that happen we need to move from a rigid and ixed
layout to a luid layout.

Media Queries: Supporting Differing Viewports

[60]

Summary
In this chapter, we've learned what CSS3 media queries are, how to include them in
our CSS iles, and how they can help our quest to create a responsive web design.
We've also learned how to make modern mobile browsers render our pages in
the same manner as their desktop counterparts and touched upon the need to
consider a "content irst" policy when structuring our markup. We've also learned
the data economies that can be made when we use images in our design in the most
economical way.

However, we've also learned that media queries can only provide an adaptable web
design, not a truly responsive one. Media queries are an essential component in a
responsive design but a luid layout that allows our design to lex between the break
points that the media queries handle is also essential. Creating a luid base for our
layout to smooth the transition between our media query break points is what we'll
be covering in the next chapter.

